【精华】圆的面积教案4篇
作为一名教师,时常需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。教案应该怎么写才好呢?下面是小编为大家收集的圆的面积教案4篇,欢迎大家借鉴与参考,希望对大家有所帮助。
圆的面积教案 篇1
教学内容:小学数学义务教育教材第十一册p129---p130
教学目的:
1、通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括力,发展学生的空间观念。
3、渗透转化的数学思想和极限思想。
教学重点:圆面积公式的推导。
教学难点:弄清圆与转化后的近似图形之间的关系。
学具:每四人小组一个彩色圆(教师分好8等分点)、两三个圆、固体胶、卡纸、剪刀。
教具:课件。
教学过程:
一、谈话揭题:
出示图:
你看到了什么?刚才同学们提到的圆的面积就是今天这节课我们要来研究的内容。(出示课题:圆的面积)那么圆的`面积和什么有关?(半径、直径)
二、新课教学:
1、猜测:
现在请大家看,这儿有一张正方形的纸,(课件演示)用它剪一个最大的圆,(课件演示)如果圆的半径用r来表示,你知道原来正方形的面积怎么求吗?(2rx2r)整理一下(板书:2rx2r=4r的平方)(按虚线)我们再来看看图,你明白了什么?这样看来,正方形的面积是r的平方的4倍,那么,现在请你猜猜看,圆的面积大概会是多少?
2、验证:
(1)现在我们都认为圆的面积是r的平方的三倍多一点,那么,圆的面积与r的平方到底有怎样的关系呢?你们准备用怎样的方法来研究它呢?下面请四人小组讨论一下,可以动用桌子上的学具。(教师巡视)
(2)反馈:(三分钟后,低到高)
a:你们为什么不动?你们又是怎么想的?(平均分成若干份,拼成我们学过的图形来研究)同意吗?
b:这儿有一个圆,我们把它平均分成四份,可以吗?那么怎么拼呢?(学生拼,投影演示)看看象什么图形?(平行四边形)象吗?我看不象。怎样使它象呢?(分的份数多一点)刚才我们拼的图形象平行四边形,当然,可能还能拼成别的图形。
c:刚才我们讨论研究出来的方法第一步是等分,第二步是想一想拼成什么图形,再拼一拼,第三步是推导。(板书:等分想、拼推导)当然,也可以用别的方法。(板书箭头)
(3)操作:
你们想试一试吗?现在请组长拿出信封,倒出里面的圆片,我们以四人小组为单位动动手。(小组讨论操作,师巡回指导:表扬拼出与别组不一样图形的小组,提示拼好后可以用胶水粘住。)
3、小组汇报:(举起把圆等分成8份、16份所拼成的长方形或平行四边形给学生看一看,再请平均分成16份拼成长方形或平行四边形的同学汇报)
(1)学生汇报。
(2)有没有疑问?
拼成的长方形是真正的长方形吗?为什么?(边是曲线)
如果把一个圆等分成32份,拼成的长方形会怎样呢?(课件演示)等分成64份,又会怎么样呢?(课件演示)如果等分的份数更多,又会怎样呢?你能得出什么结论?(圆等分的份数越多,拼成的图形越接近于长方形)
(3)板书:
那么长方形的面积是怎么求的?(板书)它的长相当于圆的什么?怎么用字母表示?宽呢?(课件演示:在长方形或平行四边形64等分图的下面出示r,右边出示r,同时板书)那么圆的面积=rxr=r的平方。
(4)还有补充吗?
小组汇报:平行四边形、三角形、梯形面积转化为圆的面积公式。(实物投影仪下显示,最后写成r的平方,14bd的平方)
4、小结:通过刚才我们四人小组的活动,大家有什么结论?(不管拼成什么图形,都能推导出圆的面积是r的平方)那么知道什么可以求出圆的面积?(半径、直径、周长)
三、巩固练习:
1、出示:课本p1302(1)(3)(课件演示)会吗?(草稿本上算,投影反馈)
2、现在来看这个图形(猜测题)如果r=5厘米,你能求什么?(圆面积、正方形的面积、剩下的纸的面积)请你草稿本上算一算。(投影反馈)或口答。
四、机动练习:
教师准备一些实物,分发给四人小组:你们能求出它们的面积吗?(反馈)还可以测什么数据算面积?
五、全课小结:
今天这节课给你印象最深刻的一点是什么?
圆的面积教案 篇2
教学目标:
1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。
2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。
教学重点:
掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。
教学难点:
应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
教学准备:
圆规,环形图片,教学情境图。
教学过程:
一、创设情境,引入新知
1.出示自然界中的一些环形图片。
(l)观察图片,说说这些图形都是由什么组成的。
(2)你能举出一些环形的实例吗?
2.引入:今天这节课我们就一起来研究环形面积的计算方法。
二、合作交流,探究新知
1.教学例11。
(1)出示例11题目,读题。
(2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。
(3)小组讨论,理清解题思路。
(4)集体交流
①求出外圆的面积。
②求出内圆的面积。
③计算圆环的.面积。
(5)学生按步骤独立计算。
(6)组织交流解题方法,教师板书
①求出外圆的面积:3.14102 =314(平方厘米)
②求出内圆的面积:3.1462 =113.04(平方厘米)
③计算圆环的面积:314-113.04=200.96(平方厘米)
(7)提问:有更简便的计算方法吗?
(8)学生回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积
还可以利用乘法分配率进行简便计并。
简便计算
3.14102-3.1462
=3.14(102-62)
=3.1464
= 200.96(平方厘米)
答:这个铁片的面积是200.96平方厘米。
2.概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?
圆的面积教案 篇3
教材说明
教材首先提出圆面积的概念,接着提出如何把圆转化成已学过的图形来计算面积的问题。把未知的问题转化成已知的问题,是常用的数学思想和方法。学生在学习求直线图形面积时,已经用过这种方法。因此,教材中采取直接提出问题,来引导学生推导圆面积的计算公式,又一次让学生了解用这种数学思想和方法来解决新的较复杂的问题。教材采用实验的方法,把圆分割成若干等份,再拼成一个近似的长方形。使学生看到把圆分别分割成16、32等份,分割的份数越多,拼得的图形就越接近于长方形。然后由长方形的面积计算公式推导出圆面积的计算公式S=r2。这里涉及了数学中常用的逐步逼近的方法,就是采取某种方法,使一个近似的图形(或式子)逐步逼近精确的图形(或式子)。
这部分内容教材中安排了三道例题。例3是已知半径求圆的面积。例4是已知圆的周长求圆的面积,要先求出半径,再求圆的面积。例5是求环形的面积,教材通过插图帮助学生理解求环形的面积是从大圆面积中减去小圆面积。然后再引导学生列综合算式解答,找到简便的算法为3.14(152-102)。做一做中的题目跟例题有差异,但思想方法仍是从一个大的图形的面积中减去一个小的图形的面积。由于环形问题比较复杂,教材中只通过一个例题向学生简单介绍一下,不作更多的要求。在日常生活和工农业生产中经常要用到求圆的面积,练习中安排了已知半径、直径或圆的周长求圆面积的题目;还安排了一些求组合图形的面积和实习作业,以培养学生综合运用知识的能力
。 教学建议
1.这部分内容可以用2课时进行教学,教学圆的面积公式的推导、例3、例4、例5,完成练习二十四。
2.教学圆的面积的含义时,可以先让学生回忆已学过的图形的面积的含义,并进行分析对比,使学生认识到它们的共同点。
3.教学圆面积的计算公式之前,先要引导学生回忆平行四边形、三角形和梯形面积计算公式的推导过程,并分析、对比各个公式推导过程的共同点,以及由于图形不同而产生的不同点。使学生领会到将一个图形转化为已学过的图形,从而推导出这个图形的面积计算公式,是一种基本的数学思想和方法,同时,不同图形的面积计算公式推导的过程和方法会有不同之处。
4.教学圆面积计算公式的推导过程时,可以让学生预先准备好一些圆形做学具。
在教师指导下,让学生按照教材上的图,将圆16等分、剪开后,拼成一个近似的长方形。(教师还可以用教具将圆分成24等份,拼成一个近似的长方形。)然后,把每一份再2等分,剪开后,拼成一个近似的长方形。教师可以直接用把圆分成32等分的教具拼成一个长方形。最后,把拼成的图形加以比较,使学生看到,分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。由于在拼接的过程中,图形的面积没有发生变化,也就是圆的面积等于这个拼成的近似长方形的面积。接着,教师在拼成近似长方形的旁边画一个长方形,并指出如果份数分得越细,拼成的近似长方形就越接近长方形。教师引导学生分析、比较长方形的长与宽跟原来的圆的半径与周长之间的关系,使学生能自己看出:这个近似长方形的长相当于圆的周长的一半,即C/2=2r/2=r,长方形的宽就是圆的半径r。因此,长方形的面积=长宽=r,圆的面积等于长方形的面积,所以圆的面积=r=r2。
5.教学例3时,列成式子3.1442后,要向学生指出,必须先算平方,后算乘法。
6.教学例4时,要启发学生想:计算圆的面积需要什么条件?题目中给了什么条件?怎样将题目中的已知条件转化成求圆面积所需要的条件?因为题目中给出的条件是圆的周长,要按照公式C=2r,先求出半径r,列式为:18.843.142;再利用公式S=r2,让学生自己求出圆的面积。运算中要注意单位名称,r用长度单位,S用面积单位,防止混淆。
7.学生在学过圆的面积以后,往往容易把计算圆的面积与周长混淆。教学中除加强圆周长和圆面积这两个不同概念的`教学以外,可以在适当的时候,结合做一做引导学生进行辨别,分清以下几点:
①圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度;
②求圆面积的公式是S=r2,求圆周长的公式是C=d或C=2r;
③计算圆面积用面积单位,计算圆周长用长度单位。
8.教学例5时,教师要根据题意准备实物或教具(一个圆中间可以取出一个同圆心的小圆),通过演示,使学生明确,求环形面积就是从大圆面积中减去小圆面积。因此,分步计算都是先分别求出大圆面积和小圆面积,再求出环形的面积。当要求列综合算式时,就可以得到简便算法为3.14(152-102)。例5后面做一做中的习题,跟例5基本类似。通过这道题的计算,要使学生进一步巩固计算这类环形面积的方法,一般是从大圆的面积中减去小圆的面积。
9.关于练习二十四中一些习题的教学建议。
第2题中,有已知直径求圆面积的题目。解答时,先求出半径r,再计算圆面积。
第6题,是求一个数的平方的口算练习。掌握常用的平方计算,对提高计算圆面积的速度有帮助。教师还可以补充一些10以内数的平方练习。要着重指导学生练习整十数的平方,如402是4040=1600,而不是402。
第7、8题,是已知圆的周长求圆的面积,先要由圆的周长求出圆的半径,再求圆的面积。
第9题,是实习作业,先让学生讨论测量的方法。测量时一般用绳子在齐胸脯处围树干一周,就是树干横截面的周长,取得数据后再计算横截面的面积。
第14*题,借助图形使学生直观认识到,在一个正方形里,当直径等于正方形的边长时,画的圆最大。具体到这道题,就是当要剪下的圆的直径等于正方形铁皮的边长时,才能剪下一个最大的圆。因此,我们可以算出最大的圆的面积是: S圆=r2=25=78.5(平方厘米)而正方形的面积是:S正方形=1010=100(平方厘米)所以,剩下的铁皮的面积是:100-78.5=21.5(平方厘米)从而可以得出:剩下的铁皮的面积大约占原来正方形面积的1/5。
第15*题,是求组合图形面积的练习。
教学时,要引导学生首先分析图形的组合情况,判断所求的图形是由哪个图形加上(或者减去)哪个图形得到的,然后进行计算。如图所示,该图可以看作由1个正方形和4个1/4圆组成的,所以该图形的面积是1个正方形的面积与1个整圆面积的和(这个圆的半径等于正方形的边长)。第16*题,要先求圆的半径和正方形的边长,再求出面积进行比较。这里包含一个数学性质,即在边长相同的条件下,所围成的图形中圆的面积最大。
圆的面积教案 篇4
第一课时
教学内容
圆的面积
教材第67、第68页的内容。
教学要求
1.使学生理解圆的面积公式的推导过程,掌握求圆的面积的方法并能正确计算。
2.培养学生运用转化的思想解决问题的能力。
重点难点
重点:掌握圆的面积的计算公式,能够正确地计算圆的面积。
难点:理解圆的面积公式的推导过程。
教具学具
实物投影,各种图形的纸片。
教学过程
一导入
1.我们学过哪些平面图形的面积公式?
2.长方形、平行四边形和三角形的面积公式分别是什么?
3.平行四边形的面积公式是如何推导的?小结:平行四边形面积公式的推导,提供给我们一种研究平面图形的面积的方法,即把所学的图形进行分割、拼摆,转化成学过的图形,用旧知识解决新问题。今天,我们还要用转化的思想研究圆的面积。
二教学实施
1.明确圆的面积的概念。
(1)老师出示一个圆,提问:谁能联系我们学过的图形的面积说一说圆的面积是什么?
学生回答,老师归纳:圆所围成的平面的大小叫做圆的面积。
(2)圆的大小是由什么决定的?
(3)展示由“曲”变“直”的渐变图。
引导学生逐层观察圆周曲线的变化情况,把圆等分的份数越多,圆周曲线就越来越直,当我们继续分下去……圆周曲线就变成一条近似的直线段了,用这样的小块拼摆的图形就更近似于我们学过的图形。
2.学生动手操作,推导圆的面积公式。
为了研究方便,我们把圆等分成16份,圆周部分近似看作线段,其中的一份是个近似的三角形,
(1)指导学生动手摆学具,并思考几个问题:
你摆的是什么图形?
你摆的图形的面积与圆的面积有什么关系?
所摆图形的各部分相当于圆的什么?
你如何推导出圆的面积?
(2)学生动手摆学具,然后发言。
拼成长方形:
老师说明:如果分的份数越多,每一份就会越小,拼成的图形就会越接近长方形。
出示教材第67页上面的图加以说明。
拼成的近似长方形的长和宽与圆的各部分有什么关系?
从图中可以看出圆的半径是r,长方形的长是πr,宽是r。
长方形的面积=长×宽
↓ ↓↓
圆的`面积=πr×r=πr2
如果用S表示圆的面积,那么圆的面积计算公式就是S=πr2。
3.利用公式计算圆的面积。
出示例1:圆形草坪的直径是20m,每平方米草皮8元。铺满草坪需要多少钱?
指名读题,让学生试做,提醒学生不用写公式,直接列算式就可以。
板书:20÷2=10(m)
3.14×102
=3.14×100
=314(m2)
314×8=2512(元)
答:铺满草坪需要2512元。
老师强调指出:列出算式后,要先算平方,再与π相乘。
三课堂作业新设计
1.直接写出得数。
22= 32= 42= 52= 62= 72=
82= 92= 102= 0.22=0.72= 0.92=
2.求下面各圆的面积。
3.一块圆形铁板的半径是3分米。它的面积是多少平方分米?
4.一个圆桌桌面的直径是1.2米。它的面积是多少平方米?
四思维训练
计算阴影部分的面积。(单位:分米)参考答案
课堂作业新设计
1.491625364964811000.040.490.81
2.12.56平方分米28.26平方分米1256平方厘米28.26平方米
3.28.26平方分米
4.1.1304平方米
思维训练
3.44平方分米
板书设计
圆的面积
长方形的面积=长×宽
↓ ↓↓
圆的面积=πr×r=πr2
20÷2=10(m)
3.14×102
=3.14×100
=314(m2)
314×8=2512(元)
答:铺满草坪需要2512元。
备课参考教材与学情分析
本部分内容是在初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形的面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。
课堂设计说明
1.通过实际情境,一方面使学生了解圆的面积的含义,另一方面使学生体会到在实际生活中计算圆面积的必要性。
2.教学时,强调知识迁移的过程。
平行四边形、三角形和梯形的面积公式推导过程是学生知识迁移的基础,这一环节的设计既能勾起学生对已有知识的回忆,又能启发学生运用转化的思想解决数学问题。
3.组织学生观察猜想。
先观察再猜想的方法既培养了学生的空间想象力,又发展了学生的逻辑推理能力。
【圆的面积教案】相关文章:
圆的面积教案09-21
圆的面积教案优秀02-27
圆的面积教案(精选8篇)03-19
小学数学圆的面积的教案11-24
圆的面积教案(精选18篇)05-17
圆扇形弓形的面积教案10-01
圆的面积教案(精选15篇)02-24
圆的面积教案15篇02-16
圆的面积教案(15篇)02-19