平行四边形教案范文汇编10篇
作为一名人民教师,就有可能用到教案,教案是保证教学取得成功、提高教学质量的基本条件。那么应当如何写教案呢?下面是小编帮大家整理的平行四边形教案10篇,仅供参考,大家一起来看看吧。
平行四边形教案 篇1
导学目标:
1、经历并了解平行四边形的判别方法探索过程,使学生逐步掌握说理的基本方法。
2、探索并了解平行四边形的判别方法:两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。能根据判别方法进行有关的应用。
3、在探索过程中发展学生的合理推理意识、主动探究的习惯。
4、体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。
导学重点:平行四边形的判别方法。
导学难点:根据判别方法进行有关的应用
导学准备:多媒体课件
导学过程:
一、快速反应
1.如图,四边形ABCD,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是__________,根据是_____________________
2.如图,四边形ABCD中,AB//CD,且AB=CD,则四边形ABCD是___________,理由是__________________________
3.小明拼成的四边形如图所示,图中的四边形ABCD是平行四边形吗?
结论:______________________________________
符号表示:
4. 如图:在四边形ABCD中,2,4.四边形ABCD是平行四边形吗?为什么?
在图中,AC=BD=16, AB=CD=EF=15,
CE=DF=9。
图中有哪些互相平行的.线段?
二、议一议
1.一组对边平行,另一组对边相等的四边形一定是平行四边形吗?
三、平行四边形的判别方法:
(1)两组对边分别平行的四边形是平行四边形。
(2)两组对边分别相等的四边形是平行四边形。
(3)一组对边平行且相等的四边形是平行四边形。
(4)两条对角线互相平分的四边形是平行四边形。
四、练一练:
1.判断下列说法是否正确
(1)一组对边平行且另一组对边相等的四边形是平行四边形 ( )
(2)两组对角都相等的四边形是平行四边形 ( )
(3)一组对边平行且一组对角相等的四边形是平行四边形 ( )
(4)一组对边平行,一组邻角互补的四边形是平行四边形 ( )
2.有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?
3.比一比:如图,四个全等三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由。
五、师生共同小结,主要围绕下列几个问题:
(1)判定一个四边形是平行四边形的方法有哪几种?
(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?
(3)平行四边形判定的应用
六、课后巩固:课本P107习题4.4第1题和第2题
七、课后反思:
平行四边形教案 篇2
教学目的:
1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积。
2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。
3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。
4、培养学生自主学习的能力。
教学重点:掌握平行四边形面积公式。
教学难点:平行四边形面积公式的推导过程。
教具、学具准备:1、多媒体计算机及课件;2、投影仪;3、硬纸板做成的可拉动的长方形框架;4、每个学生5张平行四边形硬纸片及剪刀一把。
教学过程():
一、复习导入:
1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)
2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)
3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的计算”。
二、质疑引新:
1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好?
2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗?
3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。
4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习平行四边形面积的计算。(板书课题:平行四边形面积的计算)
三、引导探求:
(一)、复习铺垫:
1、什么图形是平行四边形呢?
2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。
3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。
(二)、推导公式:
1、小小魔术师:我们现在来做一个变一变的小游戏(微机显示一个不规则图形),我们可以直接用所学过的求面积公式来求它的面积吗?
2、能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)
3、能不能用同样的方法把一个平行四边形转化成长方形呢?请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。
4、学生实验操作,教师巡视指导。
5、学生交流实验情况:
⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!(用投影仪演示剪拼过程)
⑵、有没有不同的剪拼方法?(继续请同学演示)。
⑶、微机演示各种转化方法。
6、归纳总结规律:
沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。并引导学生形成以下概念:
⑴、平行四边形剪拼成长方形后,什么变了?什么没变?
⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?
⑶、剪样成的图形面积怎样计算?得出:
因为:平行四边形的面积=长方形的面积=长×宽=底×高
所以:平行四边形的面积=底×高
(板书平行四边形面积推导过程)
7、文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作".",也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。
8、让学生闭上眼睛,在轻柔的音乐中回忆平行四边形面积计算的'推导过程。
四、巩固练习:
1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)
2、练习:
(1)、(微机显示例一)求平行四边形的面积
(2)、判断题(微机显示,强调高是底边上的高)
(3)、比较等底等高的平行四边形面积的大小(用求面积的公式计算、比较,得出结论:等底等高的平行四边形面积相等)
(4)、思考题:用求面积的公式解决流氓兔的难题(微机演示,得出结论:原长方形与改变后的平行四边形比较,长方形的长等于平行四边形的底,长方形的宽不等于平行四边形的高,所以二者的面积不相等)。
五、问答总结:
1、通过这节课的学习,你学到了哪些知识?
2、平行四边形面积的计算公式是什么?
3、平行四边形面积公式是如何推导得出的?
六、课后作业:P67 1、2、3、5 《指导丛书》练习十六 1
平行四边形教案 篇3
教学目标:
(1)通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积,培养学生初步的逻辑思维能力和空间观念。
(2)能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的`底和高,提高分析问题和解决问题的能力。
教学重点:通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积。
教学难点:能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。
教学准备:教具、投影。
教学过程:
一、复习准备:
1.平行四边形、三角形、梯形的概念。
2.平行四边形、三角形的性质。
3.各图形的对称情况。
4.图形的大小用面积来表示。 (引人新课)
二、新授
1.投影,并观察,填书本P1的空格
2.操作:用割补法把平行四边形拼成长方形。
3.量一量长方形的长和宽与平行四边形的底和高有怎样的关系?
4.得出:
长方形的面积= 长 × 宽
平行四边形的面积=( )×( )
5.怎样计算下面图形的面积?
平行四边形教案 篇4
【学习目标】
1、平行四边形性质(对角线互相平分)
2、平行线之间的距离定义及性质
【新课探究】
活动一:
如图,□ABCD的两条对角线AC、BD相交于点O.
(1)图中有哪些三角形是全等的?有哪些线段是相等的?
(2)想办法验证你的猜想?
(3)平行四边形的性质:平行四边形的对角线
几何语言:∵四边形ABCD是平行四边形(已知)
∴AO==AC,BO==BD()
活动二:如图,直线∥,过直线上任意两点A,B分别向直线做垂线,交直线与点C,点D.
(1)线段AC,BD有怎样的位置关系?
(2)比较线段AC,BD的长短.
(3)若两条直线互相平行,,则其中一条直线上任意一点到另一条直线的距离,这个距离称为平行线之间的距离。平行线之间的垂线段处处.
【知识应用】
1.已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=
2.如图,四边形ABCD是平行四边形,DB⊥AD,求BC,CD及OB,OA的长.
3.已知□ABCD中,AB=12,BC=6,对边AD和BC的距离是4,则对边AB和CD间的距离是
【当堂反馈(小测)】:
1、平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。
2、如图,在□ABCD中,,已知∠ODA=90°,OA=6cm,OB=3cm,求AD、AC的长
3、如图,在□ABCD中,已知AB、BC、CD三条边的长度分别为(x+3)cm,(x-4)cm,16cm,这个平行四边形的周长是多少?
【巩固提升】
1.平行四边形的两条对角线
2、已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=
3、已知□ABCD中,AB=8,BC=6,对边AD和BC的距离是2,则对边AB和CD间的距离是
4、下列性质中,平行四边形不一定具备的是()
A、对角互补B、邻角互补C、对角相等D、内角和是360°
5、下列说法中,不正确的是()
A、平行四边形的对角线相等B、平行四边形的对边相等
C、平行四边形的对角线互相平分D、平行四边形的对角相等
6、如图,在□ABCD中,,已知∠BAC=90°,OB=8cm,OA=4cm,求AB、BC的长
7、如图,已知□ABCD中,对角线AC与BD相交于点O,△AOD的周长是80cm,已知AD的'长是35cm,求AC+BD的长。
8、如图,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F。
(1)写出图中每一对你认为全等的三角形;
(2)选择(1)中的任意一对进行证明。
9.对角线可以将平行四边形分成全等的两部分,这样的直线还有很多。
(1)多做几条这样的直线,看看它们有什么共同的特征
(2)试着用旋转的有关知识解释你的发现。
平行四边形教案 篇5
【教材分析】
本节课是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》第1课时《平行四边形的面积》。平行四边形面积的计算是在学生已经掌握并能灵活运用长方形、正方形面积计算公式,理解平行四边形特征的基础上,进行教学的。教材在编排上非常重视让学生经历知识的探索过程,使学生不仅掌握面积计算的方法,更要参与面积计算公式的推导过程,在操作中,积累基本的数学思想方法和基本的活动经验,完成对新知的建构。本节课首先通过具体的情境提出计算平行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何去解决,使学生感到学习新知识的必要性;其次,对学生进行动手操作,自主探索的培养,使学生能寻求解决问题的方法;最后,让学生归纳计算平行四边形面积的基本方法。根据学生的多种剪法,组织学生讨论这些剪法的共同特点,并比较长方形与平行四边形之间的关系,从而推导出计算平行四边形面积的公式。
【教学目标】
知识与能力目标:使学生能运用数方格、割补等方法探索平行四边形面积的计算公式,初步感受转化思想;让学生掌握平行四边形面积的计算公式,能够运用公式正确计算平行四边形的面积。
过程与方法目标:通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思想方法解决问题的能力;创设自主、和谐的探究情境,让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。
情感态度与价值观目标:通过活动,培养学生的合作意识和探索创新精神,感受数学知识的奇妙。
【学情分析】
平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历平行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。
【教学重点】
掌握平行四边形面积计算公式。
【教学难点】
平行四边形面积计算公式的推导过程。
【教具】
两个完全一样的平行四边形、不规则图形、小黑板、剪刀、多媒体及课件。
【教学过程】
一、创设情境,引入课题。
1、游戏:小小魔术师。教师出示不规则图形。
(1)师:你能直接计算出这个图形的面积吗?
(2)师:你能计算出这个图形的面积吗?说一说用什么方法?
(3)师:现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算长方形的面积?
2、小结:刚才同学们先将不平整的部分剪下,再平移补到缺口处,就将不规则的图形转化成学过的长方形,这是一种很重要的数学思考方法转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)
(设计思路:温故是课堂教学起始的重要环节,它起到承上启下的作用。通过出示复习题,唤起学生对已有知识的回顾,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为后面探究平行四边形面积公式的推导打下坚实的基础。)
二、激趣引思,导入新课。
师:同学们,昨天早上我听校长说,学校要建一个宣传栏,其中要用一块底是5米,高是4米的平行四边形胶合板。我觉得这是一件好事,因为平行四边形是一种漂亮的图形,你们听了校长的话,想知道些什么?
生1:我想知道要花多少钱才可以做成。
生2:我想这个宣传栏建起来一定很漂亮,会把我们的校园点缀得更加美丽!
生3:我想知道这块胶合板的面积有多大。
师:我听出来了,大部分同学都想知道这块平行四边形胶合板的面积,这节课我们就来探究平行四边形的面积。(板书课题:平行四边行的面积)
(设计思路:教师选取发生在学生身边的事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的联系,更能激发求知欲望。)
三、动手操作,探究发现。
1、用数方格的方法启发学生猜想平行四边形面积的计算方法。
师:同学们回忆一下,我们以前是怎么学习长方形面积公式的?(指名复述过程)下面我们用数方格的方法来数出平行四边形的面积。
教师用课件演示:先出示一个画有方格(每个方格的面积是1平方厘米)的长方形,再将一个平行四边形放在方格图上面,让学生用数方格(不满一格的按半格计算)的方法回答问题。
(1)这个平行四边形的面积是多少平方厘米?
(2)它的底是多少厘米?
(3)它的高是多少厘米?
(4)这个平行四边形的面积跟它的高与底有什么关系?
(5)请同学们猜一猜:怎样计算平行四边形的面积?
2、引导学生把平行四边形转化为长方形,验证猜想推出平行四边形的面积公式。
我们用数方格的方法得到一个平行四边形的面积,但是用这个方法计算面积方便吗?
生:不方便。
师:既然不方便,我们能不能用更方便的方法来解决呢?
小组交流,学生讨论,发表意见。
生:用剪和拼的方法。
师:(出示一个平行四边形)这个平行四边形也可以转化长方形吗?怎样剪呢?剪歪了怎么办?(可以先用尺子画一条虚线。)
师:这条虚线也就是平行四边形的哪部分?(高)还记得怎样画高吗?
师:第一步:画;第二步:剪;第三步:移。那我们就动手来剪一剪吧!(学生动手操作)
师:拼成长方形了吗?拼好了摆在桌面给老师看看,请两个同学来前面展示他们的作品,(指名上黑板前)说说你是怎样操作的?
(生:我先画条高,沿着高剪开,把这部分移过去,就拼成了一个长方形。)
师:怎样移过去呀?平着移到右边,这种方法我们把它叫做平移。
师:再请一个同学展示一下,他的剪法有什么不一样吗?
(生:我在中间剪的)剪成两个完全一样的梯形,可以吗?平移过去也拼成了一个长方形。 (展示学生的成果)
师:老师有几个问题,我们把平行四边形转化成了长方形,原来平行四边形的面积和这个长方形的面积相等吗?平行四边形的底和高分别与长方形的长和宽有什么关系呢?
小组讨论:
⑴ 原来平行四边形的面积和拼成的长方形的面积相等吗?
⑵ 原来平行四边形的底与拼成的长方形的长有什么关系?
⑶ 原来平行四边形的高与拼成的长方形的宽有什么关系?
师:谁来说说你的想法。它的面积没有多,也没有少,平行四边形的面积等于剪拼后的长方形的面积。(板书)平行四边形的底和高与长方形的长和宽有什么关系?我们看课件演示。(板书:底=长, 宽=高)
师:长方形的面积=长宽,那么平行四边形的面积怎样求?
生:平行四边形的面积=底高(板书)
师:同意吗?谁能讲一讲,为什么平行四边形的面积=底高?结合刚才一剪一拼的过程说说。(生叙述方法)
教师小结方法指名让生叙述。
师:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=ah(板书:S=ah)。
师:现在我们可以确定当初的猜想谁是正确的?
(设计思路:让学生对平行四边形面积的计算方法提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。在教学中给学生留足了自主探索的空间,最终达到学习的目的,让学生体验到成功的喜悦。)
四、实践应用,巩固提高。
师:同学们,现在你们可以算出建宣传栏要的那块胶合板的面积了吗?(学生独立完成。)
教师板书:54=20(平方米)
出示例1 (同桌讨论,独立完成,最后全班交流。)
教师板书:S=ah=64=24(平方米)
师:同学们真会动脑筋,能运用所学知识解决生活中的问题。
(设计思路:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识给别人帮忙的过程中着实体验了把成功的快乐。)
五、分层练习, 强化应用。
1、填空。
(1)把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形( )。这个长方形的长与平形四边形的底( ),宽与平行四边形的高( )。平行四边形的面积等于( ),用字母表示是( )。
(2)0.85公顷=( )平方0.56平方千米=( )公顷
2、计算下面各个平行四边形的面积。
(1)底=2.5cm,高=3.2cm。 (2)底=6.4dm,高=7.5dm。
3、解决问题。
(1)小明家有一块平行四边形的菜地,面积是120平方米,量得底是20米,它的高是多少?
(2)一块平行四边形钢板,底8.5m,高6m,它的`面积是多少?如果每平方米的钢板重38千克,这块钢板重多少千克?
(设计思路:几道练习题从易到难有一定坡度,通过练习,既巩固了本节课所学的知识,又使不同层次的学生都得到了发展,拓展了学生的思维。)
六、总结升华,拓展延伸。
1、教学小结:同学们,这节课你们学会了什么?说一说你知道哪些解决问题的方法?
(设计思路:通过说一说,使学生对本节课所学知识有个系统的认识,可以提高学生的归纳、总结、概括、表达等多方面的能力。)
2、课后练习
(1)、练习十五第1题,第2题。(任选一题)
(2)、解决问题:选一个平行四边形的实物,量出它的底和高,并计算出面积。
(设计思路:分层次布置作业,让学生根据自己的能力,适当选择作业。这样做,一来可以提高学生的学习兴趣,二来体现了让学生在数学上得到不同的发展。)
【教学反思】:
一、调动了学生学习的积极性和主动性
这节课我使用了多媒体教学课件,通过图文并茂,把静止的问题活动话,激发了学生学习的积极性和主动性,节省了课堂教学的时间。学生将两个不规则的图形转化成了长方形求出了不规则图形的面积,接着出示一个平行四边形,如何求平行四边形的面积呢?这样引入新课,调动了学生学习的兴趣。
二、创造出宽松和谐的环境,引导学生探究。
课堂上为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证。
这节课组织学生进行自主探究、合作交流是本节课的重点环节,教师在放手让学生从自己的思维实际出发,给学生以独立思考时间的基础上让学生进行交流是十分必要的。由于学生的学习活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流能满足学生展示自我的心理需要,同时通过师生互动、生生互动,相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。
平行四边形教案 篇6
教学目标:
1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;
2.索并掌握平行四边形的性质,并能简单应用;
3.在探索活动过程中发展学生的探究意识。
教学重点:平行四边形性质的探索。
教学难点:平行四边形性质的理解。
教学准备:多媒体课件
教学过程
第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。)
1.小组活动一
内容:
问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的.三角形纸片,将它们相等的一边重合,得到一个四边形。
(1)你拼出了怎样的四边形?与同桌交流一下;
(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。
2.小组活动二
内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?
第二环节探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)
小组活动3:
用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180°,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?
(1)让学生动手操作、复制、旋转、观察、分析;
(2)学生交流、议论;
(3)教师利用多媒体展示实践的过程。
第三环节推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。)
实践探索内容
(1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。
(2)可以通过推理来证明这个结论,如图连结AC。
∵四边形ABCD是平行四边形
∴AD//BC,AB//CD
∴∠1=∠2,∠3=∠4
∴△ABC和△CDA中
∠2=∠1
AC=CA
∠3=∠4
∴△ABC≌△CDA(ASA)
∴AB=DC,AD=CB,∠D=∠B
又∵∠1=∠2
∠3=∠4
∴∠1+∠3=∠2+∠4
即∠BAD=∠DCB
第四环节应用巩固深化提高(10分钟,通过议一议,练一练,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。)
1.活动内容:
(1)议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗?
A(学生思考、议论)
B总结归纳:可以确定其它三个内角的度数。
由平行四边形对边分边平行得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。
(2)练一练(P99随堂练习)
练1如图:四边形ABCD是平行四边形。
(1)求∠ADC、∠BCD度数
(2)边AB、BC的度数、长度。
练2四边形ABCD是平行四边形
(1)它的四条边中哪些线段可以通过平移相到得到?
(2)设对角线AC、BD交于O;AO与OC、BO与OD有何关系?说说理由。
归纳:平行四边形的性质:平行四边形的对角线互相平分。
第五环节评价反思概括总结(8分钟,学生踊跃谈感受和收获)
活动内容
师生相互交流、反思、总结。
(1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。
(2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点?
(3)本节学习到了什么?(知识上、方法上)
考一考:
1.ABCD中,∠B=60°,则∠A=,∠C=,∠D=。
2.ABCD中,∠A比∠B大20°,则∠C=。
3.ABCD中,AB=3,BC=5,则AD=CD=。
4.ABCD中,周长为40cm,△ABC周长为25,则对角线AC=()cm。
布置作业
课本习题4.1
A组(学优生)1、2
B组(中等生)1、2
C组(后三分之一生)1、2
平行四边形教案 篇7
教学目标
教学目标:
知识目标:通过操作活动,经历推导四边形面积计算公式的过程;能运用公式计算相关图形的面积,并解决一些实际问题。
能力目标:通过实际操作发展学生的观察、操作、推理、交流能力;培养运用转化的方法解决实际问题的能力。
情感目标:培养学生勇于探索、克服困难的精神;感受数学的美。
教学重点和难点
教学重、难点:
理解平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式。
培养学生运用公式解决实际问题的能力。
教学过程
(一)创设情境,设疑引入
谈话:出示两个美丽的花坛(课件呈现)。
提问:请大家观察一下,这两个花坛哪一个大呢
然后给出长方形的长和宽让学生计算长方形的面积。
提问:那平行四边形的面积你会算吗?从而导入新课。
(二)操作探索,获取新知
数方格感知平行四边形和长方形之间的关系
(1)数方格,用数方格的方法来求平行四边形和长方形的面积,(电脑出示)
(2)汇报交流自己的发现。
小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。
2、应用“转化”思想,引入割补、平移法
(1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成会学算面积的图形。(这时教师巡视,了解情况)
(2)精彩展示:要求边讲边操作。
提问:为什么都要转化成长方形?
为什么一定要沿着高剪开呢?
接着电脑演示其它方法,渗透割补、平移法
3、建立联系,推导公式
(1)小组合作探索:
a、原来的平行四边形转化成长方形后,什么变了?什么没变?
b、拼成长方形的长与原来平行四边形的底有什么关系?
c、拼成长方形的宽与原来平行四边形的高有什么关系?
d、能否根据长方形的面积公式推导出平行四边形的'面积计算公式?(平行四边形的面积= )
(2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)
提问:用字母怎么表示呢?自学课本。
学生回答s=ah(板书)
提问:s、a、h分别表示什么呢?
提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)
(三)巩固应用,内化新知
前面的花坛题
课本第2题:你能想办法求出下面两个平行四边形的面积吗?
拓展题:先分别口算出下面图中两个平行四边形的面积,然后看你发现了什么?
(四)课堂总结,深化新知
师:同学们,通过今天的学习,你有什么收获呢?
平行四边形教案 篇8
教学目标:
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3.对学生进行辩诈唯物主义观点的启蒙教育.
教学重点:理解公式并正确计算平行四边形的面积.
教学难点:理解平行四边形面积公式的推导过程.
学具准备:每个学生准备一个平行四边形。
教学过程:
一、导入新课
1、什么是面积?
2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
二、民主导学
(一)、数方格法
用展示台出示方格图
1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的`长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2、然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)
您现在正在阅读的五年级上册《平行四边形的面积》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!五年级上册《平行四边形的面积》教学设计①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
5、引导学生总结平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底高。)
6、教学用字母表示平行四边形的面积公式。
板书:S=ah
说明在含有字母的式子里,字母和字母中间的乘号可以记作,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。
(6)完成第81页中间的填空。
7、验证公式
学生利用所学的公式计算出方格图中平行四边形的面积和用数方格的方法求出的面积相比较相等 ,加以验证。
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
三、检测导结
1、学生自学例1后,教师根据学生提出的问题讲解。
2、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等()
(2)平行四边形底越长,它的面积就越大()
3、做书上82页2题。
4、小结
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
5、作业
练习十五第1题。
附:板书设计
平行四边形面积的计算
长方形的面积=长宽 平行四边形的面积=底高
S=ah S=ah或S=ah
平行四边形教案 篇9
【当堂检测】
1.(20xx 年永州市).下列命题是假命题的是( )
A.两点之间,线段最短; B.过不在同一直线上的三点有且只有一个圆.
C.一组对应边相等的两个等边三角形全等; D.对角线相等的`四边形是矩形.
2.如图,一个四边形花坛 ,被两条线段 分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是 ,若 , ,则有( )
A. B. C. D.都不对
3.(20xx襄樊)如图,在平行四边形 中, 于E 且 是一元二次方程 的根,则平行四边形 的周长为( )
A. B. C. D.
4.(20xx年南宁市)如图(1),在边长为5的正方形 中,点 、 分别是 、 边上的点,且 , .
(1)求 ∶ 的值;
(2)延长 交正方形外角平分线 ,如图2试判断 的大小关系,并说明理由;
(3)在图(2)的 边上是否存在一点 ,使得四边形 是平行四边形?若存在,请给予证明;若不存在,请说明理由.
平行四边形教案 篇10
教学目的:
1、深入了解平行四边形的不稳定性;
2、理解两条平行线间的距离定义(区别于两点间的距离、点到直线的距离)
3、熟练掌握平行四边形的定义,平行四边形性质定理1、定理2及其推论、定理3和四个平行四边形判定定理,并运用它们进行有关的论证和计算;
4、在教学中渗透事物总是相互联系又相互区别的辨证唯物主义观点,体验“特殊--一般--特殊”的辨证唯物主义观点。
教学重点:
平行四边形的性质和判定。
教学难点:
性质、判定定理的运用。
教学程序:
一、复习创情导入
平行四边形的性质:
边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。
角:对角相等(定理1);邻角互补。
平行四边形的判定:
边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)
二、授新
1、提出问题:平行四边形有哪些性质:判定平行四边形有哪些方法:
2、自学质疑:自学课本P79-82页,并提出疑难问题。
3、分组讨论:讨论自学中不能解决的问题及学生提出问题。
4、反馈归纳:根据预习和讨论的效果,进行点拨指导。
5、尝试练习:完成习题,解答疑难。
6、深化创新:平行四边形的性质:
边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。
角:对角相等(定理1);邻角互补。
平行四边形的判定:
边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)
7、推荐作业
1、熟记“归纳整理的内容”;
2、完成《练习卷》;
3、预习:(1)矩形的定义?
(2)矩形的性质定理1、2及其推论的内容是什么?
(3)怎样证明?
(4)例1的解答过程中,运用哪些性质?
思考题
1、平行四边形的性质定理3的逆命题是否是真命题?根据题设和结论写出已 知求证; 2、如何证明性质定理3的逆命题? 3、有几种方法可以证明? 4、例2的.证明中,运用了哪些性质及判定?是否有其他方法? 5、例3的证明中,运用了哪些性质及判定?是否有其他方法?
跟踪练习
1、在四边形ABCD中,AC交BD 于点O,若AO=1/2AC,BO=1/2BD,则四边形ABCD是平行四边形。( )
2、在四边形ABCD中,AC交BD 于点O,若OC= 且 ,则四边形ABCD是平行四边形。
3、下列条件中,能够判断一个四边形是平行四边形的是( )
(A)一组对角相等; (B)对角线相等;
(C)两条邻边相等; (D)对角线互相平分。
创新练习
已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形。(用两种方法)
达标练习
1、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F。求证:四边形AECF是平行四边形。
2、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN 。
综合应用练习
1、下列条件中,能做出平行四边形的是( )
(A)两边分别是4和5,一对角线为10;
(B)一边为4,两条对角线分别为2和5;
(C)一角为600,过此角的对角线为3,一边为4;
(D)两条对角线分别为3和5,他们所夹的锐角为450。
推荐作业
1、熟记“判定定理3”;
2、完成《练习卷》;
3、预习:
(1)“平行四边形的判定定理4”的内容 是什么?
(2)怎样证明?还有没有其它证明方法?
(3)例4、例5还有哪些证明方法?
【平行四边形教案】相关文章:
平行四边形面积教案02-09
《平行四边形的认识》教案03-15
《平行四边形的面积》教案01-02
平行四边形的面积教案11-08
《平行四边形面积的计算》教案09-14
【精选】平行四边形教案四篇05-12
平行四边形教案三篇05-12
平行四边形教案四篇05-14
平行四边形教案4篇05-17
平行四边形的面积教案15篇11-27